Identification	Subject	ME 351 Materials Science, 6 ECTS			
	Department	Mechanical Engineering			
	Program	Undergraduate			
	Term	Fall 2024			
	Instructor	Tarlan Farajov			
	E-mail:				
	Phone:				
	Classroom/hours				
	Office hours				
Prerequisites	General Chemistry				
Language	English	English			
Compulsory/Elective	Compulsory				
Required textbooks and	Materials Science and Engineering, An Introduction (10th edition), W. D. Callister				
course materials	and D. G. Rethwisch				
	Introduction to Physical Metallurgy, Avner, Sidney HMcGraw-Hill				
Course outline	Materials science includes study on the relations between the structures and				
	mechanical and physical properties of materials. The duty of a materials scientist is to				
	progress or synthesize materials and new alloys, whereas a materials engineer is				
	obligated to develop new systems using present materials. Graduates in this course are				
	trained to be materials scientists and materials engineers.				
Course objectives	This course is designed to provide students a fundamental understanding of Physical				
course onjecures	Metallurgy as well as the comprehension of and acquainted with the basics of				
	Physical Metallurgy includes Crystallization Annealing Uset treatments Equilibrium				
	Physical Metallurgy includes Crystallization, Annealing, Heat treatments, Equilibrium				
.	Diagram etc.				
Learning outcomes	On successful comp	letion of this course students will be a	ible to:		
	1. Classify different materials.				
	2. Understand the basic properties that characterize the behavior of metarials				
	2. Understand	2. Understand the basic properties that characterize the behavior of materials.			
	3. Understand the type of loadings/environment that materials should withstand.				
	4. Select appro	opriate type of material for specific ap	plication.		
	5. Offer different approaches to modify structure/microstructure to get desired properties.				
	6. Design a sys	stem, component, or process to meet	desired needs within realistic		
	constraints	such as economic, environmental, sa	afety, manufacturability, and		
	sustainabilit	у.			
Teaching methods	Lecture		X		
	Group discussion		x		
	Experiential exerci	se			
	Tutorials once a me	onth on weekends			
	Case analysis and a	assignments			
	Course paper				
	Others				
Evaluation	Methods	Date/deadlines	Percentage (%)		
	Midterm Exam		25		
	Class Participation		5		
	Assignment		10		
	Quiz		20		
	Final Exam		40		
	Total		100		
Policy	Ethics				
	Copying other	students' work is highly discourage	d. All assignments must be		

	handled by the student himself. This is a university policy and violators will be reprimanded accordingly.
-	Preparation for class The structure of this course demands your individual effort outside the classroom for extra practice of many problems within the textbook. After each session, every student needs to put sufficient time to practice and finish the assignments by the predetermined date.
•	Withdrawal (pass/fail) This course strictly follows grading policy of the School of Engineering. Thus, a student is normally expected to achieve a mark of at least 60% to pass. In case of failure, he/she will be required to repeat the course the following term or year.
-	Cheating/plagiarism Cheating or other plagiarism in handling the assignments, Mid-term and Final Examinations will lead to course failure. In this case, the student will automatically get zero (0), without any considerations.
-	Professional behavior guidelines The students shall behave in the way to create favorable academic and professional environment during the class hours. Unauthorized discussions and unethical behavior are strictly discouraged.
-	Attendance Students who attend the sessions will get 5 marks. For three absence student loses 1 mark.
-	Assignment There will be a homework assignment for every chapter composed of problems.
-	Quiz There will be quizzes during the semester. The questions will be relevant to the previous weeks' topics. If you read your assignments weekly and you actively listen to the lectures and participate in the discussions, you will be successful in answering the quiz questions.
•	Final exam The final exam in this course includes solving problems, definitions, and basic concepts of the course.

Tentative Schedule					
Week	Date/Day (tentative)	Topics	Textbook/Assignments		
1		Syllabus. Introduction to materials science and engineering. Tools of the Metallurgist.	Chap 1		
2		Metals Structure and Crystallization.	Chap 2		
3		Plastic Deformation.	Chap 3		
4		Annealing and Hot Working.	Chap 4		
5		Constitution of Alloys.	Chap 5		
6		Phase Diagrams.	Chap 6		

7	The Iron-Iron Carbide Equilibrium Diagram.	Chap 7
8	Review.	
	Midterm exam	
9	The Heat Treatment of Steel	Chap 8
10	Cast Iron	Chap 11
11	Powder Metallurgy and Structures and properties of ceramics.	Chap 12
12	Polymer structures.	Chap 14
13	Corrosion of Metals.	Chap 15
14	Characteristics, Applications, and Processing of Polymers.	Chap 16
15	Failure Analysis	Chap 17
16	Final Exam	